Forcing theory and combinatorics of the real line
نویسندگان
چکیده
Abstract The main purpose of this dissertation is to apply and develop new forcing techniques obtain models where several cardinal characteristics are pairwise different as well force many (even more, continuum many) values that parametrized by reals. In particular, we look at associated with strong measure zero, Yorioka ideals, localization anti-localization cardinals. thesis introduce the property “ F -linked” subsets posets for a given free filter on natural numbers, define properties $\mu $ - $\theta -Knaster” in way. We show -Knaster preserve types unbounded families maximal almost disjoint families. These kinds led development general technique construct $\textrm {Fr}$ (where Frechet ideal) via matrix iterations ${<}\theta -ultrafilter-linked (restricted some level matrix). latter allows proving consistency results about Cichoń’s diagram (without using large cardinals) prove fact that, each ideal, four it different. Another important application three strongly compact cardinals enough can be separated into 10 values. Later on, was shown Goldstern, Kellner, Mejía, Shelah no needed maximum ( J. Eur. Math. Soc. 24 (2022), no. 11, p. 3951–3967). On other hand, deal certain tree forcings including Sacks forcing, these increase covering zero ideal $\mathcal {SN}$ . As consequence, model, such number equal size continuum, which indicates consistently larger than any classical continuum. Even used $\operatorname {\mathrm{non}}(\mathcal {SN})<\operatorname {\mathrm{cov}}(\mathcal {\mathrm{cof}}(\mathcal {SN})$ , first result more two To another direction, provide bounds generalizes Yorioka’s characterization Symbolic Logic 67.4 (2002), 1373–1384). get {\mathrm{add}}(\mathcal {SN})=\operatorname ZFC (via iteration construction). conclude combining creature approaches Kellner Arch. 51.1–2 (2012), 49–70) Fischer, 56.7–8 (2017), 1045–1103) under CH, there proper $\omega ^\omega -bounding poset $\aleph _2$ -cc forces characteristics, reals, one following six types: uniformity numbers ideals both cardinals, respectively. This answers open questions from Klausner Mejía 61 pp. 653–683). prepared Miguel Antonio Cardona-Montoya E-mail : [email protected] URL https://repositum.tuwien.at/handle/20.500.12708/19629
منابع مشابه
Set Theory, Forcing and Real Line
We give a very brief survey on ZFC theory (Zermelo-Fraenkel Set Theory) and we present an intuitive introduction to the method of forcing and some applications to the real line. Our exposition will be very informal, without any claim of completeness and rigour. The idea is just to give a very intuitive idea of what Set Theory and forcing-method are, and why they are interesting and useful from ...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولTopology and combinatorics of real line arrangements
We prove the existence of complexified real arrangements with the same combinatorics but different embeddings in P. Such pair of arrangements has an additional property: they admit conjugated equations on the ring of polynomials over Q( √ 5).
متن کاملCombinatorics on Ideals and Forcing
A natural generalization of Cohen's set of forcing conditions (the t w ~ valued functions with domain a finite subset of w) is the set of twovalued functions with domain an element of an ideal J on ~. The I~roblem treated in this paper is to determine when such forcing yields a generic real of minimal degree of constructibility. A :;imple decomposition argument shows that the non-maximality of ...
متن کاملCombinatorics for the representation theory of real reductive groups
These are notes for the third meeting of the Atlas of reductive Lie groups project at AIM, in Palo Alto. They describe how to take the description of the representation theory of a real reductive Lie group (cf. Jeff Adams’ notes from last year) to finite combinatorial terms, that can be implemented in a computer. These ideas evolved during my stay at MIT last fall, and benefited immensely from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Bulletin of Symbolic Logic
سال: 2023
ISSN: ['1943-5894', '1079-8986']
DOI: https://doi.org/10.1017/bsl.2022.40